
Judging:

<u>Tips:</u>

- Practice—practice with friends, parents, teachers how you will present
- Stay at your project—judges may want to talk to you about your project; this is part of the judging, so make a good impression
- Dress Well—wear a neat shirt and pants to make a good impression. Do not wear a hat or chew gum.
- Stand when the judges talk to you—you will appear willing to answer questions and you voice will sound better when standing
- Show enthusiasm—Be proud of your project and share your excitement with the judges
- Ask questions—After the judge has asked you questions, you could ask advice on ho to improve the project or continue your work
- Relax and enjoy the day— You have worked hard on your project. Enjoy the opportunity to share it with others.

For the Scientist in Everyone

WHY DO A SCIENCE FAIR PROJECT?

FROM STUDENTS:

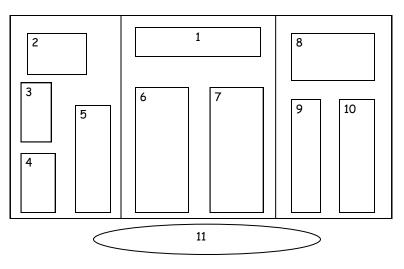
"I like to work on something that is interesting to me."

"It's not a lot of bookwork."

FROM TEACHERS:

"A student gets to do real science."

"Students get to become scientists."


FROM PROFESSIONALS:

"The basic ideas of science are learned by doing, seeing, touching, and smelling."

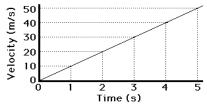
"Being able to form a question and then try to answer it are skills everyone uses."

SETTING UP THE DISPLAY BOARD

- 1. Title —Catchy, Letters large, Use a font that's easy to read
- 2. Problem Problem you hope to answer
- 3. Hypothesis —statement that predicts what you think will happen
- 4. Abstract Short, one-page summary of the project, about 250 words. Should contain the purpose, procedures, data summary, and conclusions.
- 5. Materials List —List of everything used in the experiment, specific amounts and details
- 6. Procedure & Variables Write a step-by-step procedure. List of independent, dependent, and control variables
- 7. Data Visual explanation- charts, graphs, photos of what happened
- 8. Results Summary of results using words instead of charts or graphs
- 9. Conclusion Statement of whether hypothesis was supported or not
- 10. Next time How you could improve your project
- 11. Logbook/Notebook —never leave empty

**Make sure that the text on the board is large enough to read from a distance. **

ANALYZING THE DATA:


• Select the correct graph to display your data

TYPES OF GRAPHS

Bar Graph - for comparing 2-4 independent groups

Line Graph - If the independent variable is numerical

Circle Graph – if graphing parts of a whole (percentages)

CONCLUSION:

- Look back at the hypothesis,
- Based on your data, accept or refuse your hypothesis

WRITING THE ABSTRACT:

• A one page summary of the purpose of your project, the procedures, data, and conclusion. This part basically has you sum up your whole project in several paragraphs.

QUESTIONS: ANSWER THESE TO HELP YOU PLAN

- 1. How long will this whole project take?
- 2. Whose help will I need?
- 3. How much money will this cost?
- 4. What big ideas/concepts does this explore?
- 5. What materials will I need?
- 6. How long will the experiment (just the experiment) take?
- 7. What are my variables?
- 8. What are my controls?
- 9. Does my experiment involve humans?
- 10. Does my experiment involve vertebrate animals?
- 11. Does my experiment involve harmful organisms?
- 12. Does my experiment involve harmful chemicals?
- 13. Does my experiment involve cells or tissues?

•

WHAT FORMS DO I NEED?

Doing the necessary forms is often confusing, but it's not that bad. In fact if you follow the chart, you'll see that **most of you only need to do one** form.

IF YOUR PROJECT HAS:

THESE FORMS ARE NEEDED:

A. NO HUMANS, NO VERTE- BRATES, NO POSSIBLY HARMFUL CHEMCIALS, NO POSSIBLY HARMFUL ORGAN- ISMS	A. RESEARCH PLAN & APPROVAL FORM ONLY
B. IF HUMANS ARE IN- VOLVED	B. RESEARCH PLAN & APROVAL FORM, INFORMED CONSENT FORM
C. HUMANS INVOVLED IN EXPERIMENTS	C. RESEARCH PLAN & APPROVAL FORM, HUMAN SUBJECTS FORM, INFORMED CONSENT FORM AND QUALIFIED SCI- ENTIST FORM
D. NON-HUMAN VERTEBRATE ANIMALS (FISH, MAMMALS, BIRDS, AMPHIBIANS, REPTILES)	D. RESEARCH PLAN, APPROVAL FORM, QUALIFIED SCIEN- TIST FORM, VERTEBRATE ANIMAL FORM
E. HARMFUL CHEMICALS	E. RESEARCH PLAN, APPROVAL FORM AND QUALIFIED SCI- ENTIST FORM
F. POTENTIALLY HARMFUL ORGANISM (DISEASE CAUSING BACTERIA, POISONOUS PLANTS, ETC)	F. RESEARCH PLAN, APPROVAL FORM AND QUALIFIED SCI- ENTIST FORM

For the Scientist in Everyone

COLLECTING DATA:

- Make sure all measurements are in metric units
- Organize the data into a table making sure to include the title, column titles, and units listed for each variable

TEMPERATURE	PLANT GROWTH
°C	cm
10	14.2
15	15.7
20	17.1
25	18.9

Planning Your Experiment: (Cont'd)

Variables:

- Factors in your experiment
- INDEPENDENT- THE VARIABLE YOU
 CHANGE ON PURPOSE
- <u>DEPENDENT</u>- THE VARIABLE THAT YOU OBSERVE OR MEASURE
- <u>CONTROL</u>- VARIABLES THAT REMAIN THE SAME (control variables make the contest fair)

Ex.. If you were testing does salt water affect the growth of plants?

INDEPENDENT-

SALT WATER OR PLAIN WATER DEPENDENT-THE AMOUNT OF GROWTH FOR PLANTS CONTROL-

SAME TYPE OF PLANTS, SAME SIZE PLANTS, SAME LOCATION, SAME AMOUNT OF LIGHT, SAME AMOUNT OF WATER, SAME TYPE OF SOIL

For the Scientist in Everyone

ACCTONIMENIT

ASSIGNMENT	DUE DATE
Begin Searching for Ideas	8/20
*Topic Due	8/24
Have access to books and/or computers dur- ing class doing background research	
*Question/Ind/Dep/Control Due	9/1
Rough Draft Annotated Bibliography (wkst)	9/3
*Background Research Paper	9/8
*Final Annotated Bibliography Due	9/10
*Hypothesis Due	9/13
*Research Plan (hypothesis, materials, procedures, variables)	9/21
Fill out Necessary SRC Forms	9/21
Get approval to start experiment	9/21-9/24
Actual "experiment," collect data	9/25- 10/14
Data collection & experimentation complete	10/14
Complete graphs/tables, Analyze Data	_10/15, 10/19_
Tables and Graphs Due	10/15
Begin work on Display Board	10/16(suggested)
*Abstract Due	10/22
*Final Project Due	10/29

*- counts as a test grade

NUENATE

Looking at Topics

- Make sure to pick a topic that interests you.
- Look in books, encyclopedias, and journals
- Use the World Wide Web http://school.discoveryeducation.com/ sciencefaircentral/Getting-Started/ideafinder.html

http://www.sciencebuddies.org/

http://sciencefairproject.virtualave.net/

Choosing a Problem

- Must be in the form of a question
- Must be narrow enough to be answered in 2-4 weeks of experimentation

Background research

- Gather information about your topic
- Check at least <u>6 different</u> sources
- Ask an expert
- Keep track of where you get your information to document in MLA format
- Write sources in an annotated Bibliography
- Use information gathered to write a review of literature

•

.

• • •

Writing a Literature Review

- 2-3 pages describing and explaining what you learned in your background research
- What have others learned about your topic?

Writing a Hypothesis

- An prediction about the results of the experiments
- Must be in the form of an statement that shows a tentative relationship

example

"The plants receiving the fertilizer will grow the best because fertilizer helps plants grow by giving them nutrients."

Planning Your Experiment

Materials:

- List everything you will use in your experiment
- Be specific...give exact quantities and details

Procedures:

• Steps or directions, in case someone wants to repeat your experiment; be very specific, don't assume the reader will understand

.